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Abstract

In this paper, Richardson iterativemethod is employed to solveM-Equation. In order to guaran-
tee the solution can be found, convergence theorems are established and confirmed numerically.
The optimal α, which is a parameter of Richardson iterative method that can provide the best
convergence rate, is also determined theoretically and numerically. Furthermore, a theorem es-
tablishing the range of initial vector for general splitting methods is extended from the range in
past study. To further accelerate the convergence rate, Anderson accelerator and three precon-
ditioners are incorporated into Richardson iterative method. Numerical results reveal that by
including these accelerators, the convergence rates are enhanced. Finally, we show that Richard-
son iterative methods with optimal α perform better than the SOR type methods in past studies
in terms of number of iterative steps and CPU time.
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conditioned technique.
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1 Introduction

Multi-linear system, which is a generalization of linear system, has been gaining attentions due
to its growing applications in various areas such as engineering [5], differential equations, data
mining [10], data analysis [14] artificial intelligence [12], quantummechanics [21], and economic
[7]. Similar to a linear system, which can be expressed by matrix equation, a multi-linear system
can be represented by tensor equation,

Axm−1 = b, x ∈ Vn, (1)

where A = (ai1i2...im) is an mth order and n dimensional tensor, x = (x1, . . . , xn)
T and

b = (b1, . . . , bn)
T are n dimensional vectors, and Vn is an n dimensional real or complex vector

space. The product of tensor and vector in Equation (1) is defined by

bi =
(
Axm−1

)
i
=

n∑
i2...im=1

aii2...imxi2 . . . xim , i = 1, 2, . . . , n. (2)

Equation (1) is called anM-Equation if the coefficient tensor A is anM-tensor, which is general-
ized from Mmatrix.

Ding andWei [5] are the first to establish the existence of the solution forM-Equation by prov-
ing that anM-Equation has a unique positive solution if and only ifM-tensor is nonsingular and
vector b is positive. Based on this finding, they developed the algorithms for solvingM-Equation
using Jacobi type, Gauss-Seidel type, SOR type, and Newton iterative methods. Subsequently, Li
et al. [8, 9] established the convergence theorems for the splitting iterative methods and their al-
gorithms. Furthermore, they improved the convergence rate of the splitting methods by adding
preconditioners.

However, the aforementioned studies did not consider finding the optimal parameter that
can guarantee faster convergence rate. Recently, Pasini [16] obtained the optimal parameter of
Richardson iterative method in solving linear system. More recently, Liang et al. [11] numerically
solved third order M-Equation using Richardson iterative method. Whether this method can be
extended to improve the convergence rate in solving multi-linear systems remains an open ques-
tion. Therefore, in this paper, we employ Richardson iterative method for solving M-Equation.

The paper is organized as follows. Section 2 contains some preliminaries needed in this study.
Then, a stationary Richardson iterative method for solving M-Equation is proposed in Section
3. The convergence theorems and optimal parameter α of Richardson iterative method are es-
tablished and determined theoretically. Furthermore, in this section, the range of initial vector
for general splitting methods is extended from the range in past studies. In order to enhance the
convergence rate, two strategies are employed; Anderson-type accelerator and preconditioner, as
discussed in Sections 4 and 5, respectively. Numerical analysis comparisons between the above
methods and SOR typemethods in the previous studies in terms of convergence rate are illustrated
in Section 6. Section 7 concludes this paper and provides possible future study.

2 Preliminaries

In this section, the definitions, theorems, and lemmas related to this study are presented.
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Let A = (ai1i2...im) be an mth order and n dimensional tensor. Then, A can be symmetrized on
the last (m− 1) tubes by,

S = (Sii2...im) =

(
1

(m− 1)!

n∑
τ∈T

aii2...im

)
, (3)

where T is the set of all the permutation of (i2, . . . , im). Following Equation (2), the multi-linear
system in Equation (1) can be rewritten as,

Axm−1 = Sxm−1, x ∈ Vn. (4)

Therefore, without lost of generality, the coefficient tensorA is assumed to be symmetrized on the
last (m− 1) tubes.

The following definition can be used to represent the product of matrix and tensor.

Definition 2.1. [9] Let A ∈ C[m,n], matrix B ∈ C[2,n]. If C = BA, then,

ci1i2...im =

n∑
j=1

bi1jaji2...im . (5)

Note that the product of matrix and matrix is a special case of matrix-tensor product.

Below are some definitions related to M-tensor.

Definition 2.2. [19] Let A = (ai1i2...im) ∈ C[m,n]. Its entries aii...i, 1 ⩽ i ⩽ n, are called diagonal
entries and the rest are called off-diagonal entries. A is a diagonal tensor if and only if its off-diagonal
entries are zero.

Note that if diagonal tensor A is of second order, then it is reduced to a diagonal matrix.

Definition 2.3. [17] Let A ∈ C[m,n]. The majorization matrix M(A) of A is a n × n matrix with
M(A)ij = aij...j for i, j = 1, . . . , n.

Definition 2.4. [13, 18] Let A ∈ R[m,n]. A pair (λ,x) ∈ C × (Cn \ 0) is an eigenpair (eigenvalue-
eigenvector) of A if it satisfies,

Axm−1 = λx[m−1], (6)

where x[m−1] =
(
xm−1
1 , . . . , xm−1

n

)T . If (λ,x) ∈ R × (Rn \ 0), then it is a H-eigenpair. The spectral
radius of A is denoted by ρ (A) = max{|λ| |λ ∈ σ (A)}, where σ(A) is the set of all eigenvalues of A.

Definition 2.5. [4] Let A ∈ R[m,n]. If the off-diagonal entries of A are nonpositive, then A is a Z-tensor.
A is called an M-tensor if there exists a nonnegative tensor B and a positive real number η ⩾ ρ(B) such
that,

A = ηI − B, (7)

where I is the identity tensor. If η > ρ(B), then A is called a strongM-tensor.

The following are some properties of M-tensor and spectral radius. Let R[m,n]
+ be the set of non-

negative tensors with orderm and dimension n.
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Definition 2.6. [4] A is a semi-positive tensor if and only if there exists x ⩾ 0 such that Axm−1 > 0.

Lemma 2.1. [4] A Z-tensor is a strong M-tensor if and only if it is semi-positive.

Lemma 2.2. [4] A semi-positive Z-tensor has all positive diagonal entries.

Lemma 2.3. [1] If A ∈ R
[m,n]
+ , then there exist λ ⩾ 0 and a nonnegative vector x ̸= 0, such that,

Axm−1 = λx[m−1]. (8)

Lemma 2.4. [9] Let A ∈ R
[m,n]
+ ,

i. If µx[m−1] ⩽ (<)Axm−1,x ⩾ 0 and x ̸= 0, then µ ⩽ (<)ρ(A).

ii. If µx[m−1] ⩽ Axm−1 and x > 0, then ρ(A) ⩽ µ.

For the existence and uniqueness of solution, Ding andWei [5] obtained a sufficient condition
for an M-Equation to have a unique positive solution.

Lemma 2.5. [5] If A is a nonsingular M-tensor, then for every positive vector b, the multi-linear system
Axm−1 = b has a unique positive solution.

The following theorem is necessary to discuss the convergence of iterative method.

Theorem 2.1. [20] For operator ϕ(x) : Rn → Rn, let ϕ(x∗) = x∗ and ∇ϕ : Rn → Rn×n be the Jacobian
of ϕ. If σ := ρ(∇ϕ(x∗)) < 1, then x∗ is an attracting fixed point of ϕ, which means there exist a real
number δ > 0 such that the sequence xk+1 = ϕ(xk) is convergent when ∥ x0 − x∗ ∥⩽ δ. Furthermore, if
σ > 0, then the convergence is linear with rate σ.

The properties of tensor splitting are necessary in order to prove a splitting iterative method is
convergent.

Definition 2.7. [14] Let A, E , and F be the same order and dimension tensors. A = E − F is

i. a splitting of A if E is left-nonsingular,

ii. a regular splitting if E is left-nonsingular with M(E)−1 ⩾ O, and F ⩾ O,

iii. a weak regular splitting if E−1 is left-nonsingular with M(E)−1 ⩾ O, and M(E)−1F ⩾ O,

iv. a convergent splitting if ρ((E)−1F) < 1.

Lemma 2.6. [14] If A is a Z-tensor, then the following statements are equivalent:

i. A is a strongM-tensor.

ii. A has a convergent (weak) regular splitting.

iii. All the (weak) regular splitting of A are convergent.

The comparison theorem for splitting iterative method is as follows;
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Theorem 2.2. [9] Let A ∈ R[m,n] be an irreducible Z-tensor and A = E1 − F1 = E2 − F2 be a weak
regular and regular splitting, respecitvely. If F2 ⩽ F1, F2 ̸= O, then,

i. ρ((E2)−1F2) ⩽ ρ((E1)−1F1) < 1 if and only if A is a strong M-tensor.

ii. ρ((E2)−1F2) = ρ((E1)−1F1) = 1 if and only if A is a non-strong M-tensor.

iii. ρ((E2)−1F2) ⩾ ρ((E1)−1F1) > 1 if and only if A is not an M-tensor. In particular, if F2 < F1,
F2 ̸= O, the first inequality is strict.

In the next section, the stationary Richardson iterative method for linear system solution in [16]
is extended to M-Equation.

3 Stationary Richardson Iterative Method forM-Equation Solution

The multi-linear system in (1) can be expressed as a fixed point problem

Ixm−1 = (I − αA)xm−1 + αb, (9)

where α > 0. The iterative scheme for (9) is

Ixm−1
k+1 = Ixm−1

k + αk

(
b−Axm−1

k

)
, k = 0, 1, 2, . . . , (10)

also known as Richardson iterative method, where x0 is the initial guess and b − Axm−1
k is the

residual at the k-th iteration. When αk = α is fixed for every iteration, it is called stationary
Richardson iteration.

Based on Lemma 2.5, an M-Equation with strong M-tensor and b > 0 has unique positive
solution. The Richardson iterativemethod for finding the unique positive solution ofM-Equation
with strong M-tensor and b > 0, proposed by Liang el al. [11], is described in Algorithm 1.

Algorithm 1: Stationary Richardson Iterative Method
Input: Given a strong M-tensor A, a positive vector b, an appropriate α > 0, maximum

iterative steps kmax, tolerance number ε and a initial vector x0 > 0.
Output: xk

1 Set k = 1;
2 while k < kmax, do
3 Set xk =

(
Ixm−1

k−1 + α
(
b−Axm−1

k−1

))[ 1
m−1 ];

4 if ||Axm−1
k − b|| ⩽ ε then

5 Output xk;
6 Stop;
7 else
8 k = k + 1;
9 Output “The method fails since it exceeds kmax iterations.”

In order to analyse the convergence of the stationary Richardson iterative method for solving
M-Equation as previously described, some properties of M-tensor and M-matrix are provided.
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Lemma 3.1. Let A ∈ R[m,n] be a strong M-tensor. For any positive vector x ∈ Rn with Axm−1 > 0, the
matrix

(
diag(x[m−2])

)−1 Axm−2 is a nonsingularM-matrix.

Proof. Denote matrix C =
(
diag

(
x[m−2]

))−1 Axm−2. First we prove C is a Z-matrix.

By Lemma 2.1, since A is a strong M-tensor, we have A is a semi-positive Z-tensor. Then all
the off-diagonal entries of A are nonpositive. Consider the off-diagonal entries of matrix C. The
condition x > 0 yields,

Cij =
1

xm−2
i

n∑
i3...im=1

aiji3...imxi3 . . . xim ⩽ 0,

where i, j = 1, 2, . . . , n and i ̸= j. This shows that C is a Z-matrix.

Since Axm−1 > 0 and x > 0, we have,

Cx =

[(
diag(x[m−2])

)−1

Axm−2

]
x

=
(
diag(x[m−2])

)−1 (
Axm−2x

)
=
(
diag(x[m−2])

)−1 (
Axm−1

)
> 0.

This means matrix C is semi-positive. Then C is a semi-positive Z-matrix, which is equivalent to
C is a nonsingular M-matrix.

Lemma 3.2. Let C ∈ Rn×n be a nonsingular M-matrix, and D = I − αC where α ̸= 0 is a constant.
σ(C) and σ(D) denote the set of all the eigenvalues of matrices C andD, respectively, while ρ(D)
is the spectral radius of D. If

α ∈
(
0, min

λ∈σ(C)

2Reλ

|λ|2

)
,

then ρ(D) < 1.

Proof. Since C is a nonsingular M-matrix, we have Reλ > 0 for each λ ∈ σ(C). Based on the
properties of eigenvalue, λ ∈ σ(C) if and only if 1− αλ ∈ σ(D). Then σ(D) = {1− αλ|λ ∈ σ(C)}
and ρ(D) = max

λ∈σ(C)
{|1 − αλ|}. For λ ∈ σ(C), to ensure |1 − αλ| < 1, we square both sides of the

inequality so that |1− αλ|2 < 1. In fact,

|1− αλ|2 = (1− αReλ)2 + (α Imλ)2

= 1− 2αReλ+ (αReλ)2 + (α Imλ)2

= 1− 2αReλ+ α2|λ|2 < 1,

which can be rewritten as,

−2αReλ+ α2|λ|2 < 0. (11)

Case 1: α > 0,
If α > 0, Equation (11) can be rewritten as α|λ|2 < 2Reλ. Thus, 0 < α <

2Reλ

|λ|2
.
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Case 2: α < 0,
If α < 0, Equation (11) can be rewritten as α|λ|2 > 2Reλ. So α >

2Reλ

|λ|2
> 0 since

Reλ > 0 for each λ ∈ σ(C). This contradict with α < 0. Thus, there is no α that meet
the conditions in this case.

Therefore, if α ∈
(
0,minλ∈σ(C)

2Reλ

|λ|2

)
, then ρ(D) < 1.

Theorem 3.1 guarantees the stationary Richardson iterative for solvingM-Equation is conver-
gent.

Theorem 3.1. Let Axm−1 = b be a multi-linear system where A ∈ R[m,n] is a strong M-tensor and
b > 0 with the exact solution x∗ > 0. The Richardson iteration,

Ixm−1
k+1 = Ixm−1

k + α
(
b−Axm−1

k

)
, k = 0, 1, 2, . . . , (12)

is convergent if

α ∈
(
0, min

λ∈σ(C)

2Reλ

|λ|2

)
, (13)

where C =
(
diag

(
x
[m−2]
∗

))−1

Axm−2
∗ and σ(C) is the set of all the eigenvalues of matrix C.

The iteration is locally linearly convergence with the rate,

ρ

(
diag

(
x
[m−2]
∗

)−1

(I − αA)xm−2
∗

)
, (14)

which is the spectral radius of matrix
(
diag

(
x
[m−2]
∗

))−1

(I − αA)xm−2
∗ .

Proof. Based on the Richardson iterative scheme, we define,

ϕ(x)[m−1] = Iϕ(x)m−1 = (I − αA) xm−1 + αb, (15)

where ϕ (x) : Rn → Rn, which leads to

ϕ(x) =
(
(I − αA) xm−1 + αb

)[ 1
m−1 ]

. (16)

Since A is symmetric on the last (m− 1) tubes, then

∇(Axm−1) = (m− 1)Axm−2,

where Axm−2 is an n× n matrix with

(
Axm−2

)
ij
=

n∑
i3...im=1

aiji3...imxi3 . . . xim , i, j = 1, 2, . . . , n.

Taking the gradients on both sides of (15) produces

Iϕ(x)m−2∇(ϕ(x)) = (I − αA)xm−2.
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Since ϕ(x∗) = x∗, the Jacobian of ϕ(x) at x∗ is

∇ (ϕ (x∗)) =
(
Iϕ (x∗)

m−2
)−1

(I − αA)xm−2
∗

=
(
Ixm−2

∗
)−1

(I − αA)xm−2
∗

=
(
diag

(
x
[m−2]
∗

))−1

(I − αA)xm−2
∗

= I − α
(
diag

(
x
[m−2]
∗

))−1

Axm−2
∗ . (17)

Based on Theorem 2.1, if ρ (∇ (ϕ (x∗))) < 1, then the iteration (12) is convergent.

Let C =
(
diag

(
x
[m−2]
∗

))−1

Axm−2
∗ . Then Equation (17) can be simplified to∇ (ϕ (x∗)) = I−αC.

Let σ(∇ (ϕ (x∗))) =
{
1− αλ|λ ∈ σ(C)

}
represents the set of eigenvalues. Then,

ρ(∇ (ϕ (x∗))) = max
λ∈σ(C)

{
|1− αλ|

}
.

Based on Lemma 3.1, it can be concluded that C is a nonsingular M-matrix. According to
Lemma 3.2, if

α ∈
(
0, min

λ∈σ(C)

2Reλ

|λ|2

)
,

we have ρ (∇ (ϕ (x∗))) < 1. Therefore, by Theorem 2.1, the Richardson iteration is locally linearly
convergent with the rate,

ρ

(
diag

(
x
[m−2]
∗

)−1

(I − αA)xm−2
∗

)
,

which is the spectral radius of matrix
(
diag

(
x
[m−2]
∗

))−1

(I − αA)xm−2
∗ .

If the matrix
(
diag

(
x
[m−2]
∗

))−1

Axm−2
∗ is not only an nonsingular M-matrix, but also strictly

diagonally dominant, then we can have the following corollary.

Corollary 3.1. Let Axm−1 = b be a multi-linear system where A ∈ R[m,n] is a strong M-tensor and

b > 0 with the exact solution x∗ > 0. Assume C =
(
diag

(
x
[m−2]
∗

))−1

Axm−2
∗ is strictly diagonally

dominant. Then the Richardson iteration in Equation (12) is convergent if

α ∈
(
0,

2

ρ(C)

)
,

where ρ(C) is the spectral radius of matrix C.

Proof. By the assumption C =
(
diag

(
x
[m−2]
∗

))−1

Axm−2
∗ is strictly diagonally dominant and

Lemma 3.1, C is a nonsingular strictly diagonally dominant M-matrix. Then C is positive defi-
nite, which indicates that all the eigenvalues of C are positive, and ρ(C) = max

λ∈σ(C)
{λ}. Therefore,

min
λ∈σ(C)

2Reλ

|λ|2
=

2

ρ(C)
. Thus, by Theorem 3.1, the iteration (12) is convergent if,

α ∈
(
0, min

λ∈σ(C)

2Reλ

|λ|2

)
=

(
0,

2

ρ(C)

)
.
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According to Theorem 3.1, the Richardson iteration is convergent with the rate

ρ

(
diag

(
x
[m−2]
∗

)−1

(I − αA)xm−2
∗

)
. Since smaller iteration convergence rate implies faster con-

vergent, this motivates us to determine the optimal α that can guarantee the best convergence
rate.

Theorem 3.2. LetAxm−1 = b be amulti-linear systemwhereA ∈ R[m,n] is a strongM-tensor andb > 0

with the exact solutionx∗ > 0. LetC =
(
diag

(
x
[m−2]
∗

))−1

Axm−2
∗ andσ(C) =

{
λ|λ is eigenvalue of C

}
.

The Richardson iteration in Equation (12) for solving Axm−1 = b achieves the minimal convergence rate
when,

α = αopt =


2(Reλ1 − Reλ2)

|λ1|2 − |λ2|2
, λ1 ̸= λ2,

1

λ1
, λ1 = λ2,

(18)

where,
λ1 = arg max

λ∈σ(C)

Reλ

|λ|2
, and λ2 = arg min

λ∈σ(C)

Reλ

|λ|2
. (19)

Proof. According to Theorem 3.1, if α ∈
(
0, min

λ∈σ(C)

2Reλ

|λ|2

)
, the convergence rate of Richardson

iteration in Equation (12) is

ρ

(
diag

(
x
[m−2]
∗

)−1

(I − αA)xm−2
∗

)
= ρ(I − αC) < 1. (20)

Since α is undetermined, the convergence rate (20) can be regarded as a function of α, i.e.,
ρ(α) = max

λ∈σ(C)

{
|1− αλ|

}
. So,

αopt = argmin
α

ρ(α)

= argmin
α

max
λ∈σ(C)

{
|1− αλ|

}
= argmin

α
max

λ∈σ(C)

{
|1− αλ|2

}
.

In order to obtain αopt, we denote fλ(α) = |1− αλ|2 for any λ ∈ σ(C). Then,

αopt = argmin
α

max
λ∈σ(C)

{
|1− αλ|2

}
= argmin

α
max

λ∈σ(C)
fλ(α) = argmin

α
ρ2(α), (21)

and

fλ(α) = |1− αλ|2 = (1− αReλ)2 + (α Imλ)2

= 1− 2αReλ+ (αReλ)2 + (α Imλ)2

= 1− 2αReλ+ α2|λ|2. (22)

We can see that fλ(α) is a quadratic functionwith independent variableα and quadratic coefficient
|λ|2 > 0. According to Lemma 3.1, matrix C is a nonsingular M-matrix, which indicates Reλ > 0.
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Then the symmetry axis of quadratic function fλ(α) is L =
Reλ

|λ|2
> 0. Also, fλ(α) has the minimal

value 1−
(
Reλ

|λ|

)2

=

(
Imλ

|λ|

)2

> 0.

Figure 1 shows fλ(α) for three different eigenvalues; the purple parabola represents fλ1(α)

where the symmetry axis is farthest from y-axis with λ1 = arg max
λ∈σ(C)

Reλ

|λ|2
, the blue parabola

represents fλ2(α) where the symmetry axis is nearest to y-axis with λ2 = arg min
λ∈σ(C)

Reλ

|λ|2
, and

the green parabola represents fλ(α) where the symmetry axis lies between the one of fλ1(α) and
fλ2(α). Since ρ(α) = max

λ∈σ(C)
{|1 − αλ|} < 1, we only need to consider the graph when fλ(α) < 1

for every λ ∈ σ(C). Thus, the graph of function ρ2(α) = max
λ∈σ(C)

fλ(α) is shown by a bold line in

Figure 1.

O

Figure 1: Graph of ρ2(α) = max
λ∈σ(C)

fλ(α).

From Figure 1, we can see that the bold line coincides with fλ1(α) when α ∈ (0, αopt), and

coincides with fλ2
(α) when α ∈

(
αopt, min

λ∈σ(C)

2Reλ

|λ|2

)
. Consequently, the optimal α is the coor-

dinate of the first instance of intersection between fλ1
(α) and fλ2

(α) occurs. Therefore, by letting
fλ1

(α) = fλ2
(α),

1− 2αReλ1 + α2|λ1|2 = 1− 2αReλ2 + α2|λ2|2

α
(
|λ1|2 − |λ2|2

)
= 2
(
Reλ1 − Reλ2

)
. (23)

If λ1 = λ2, then all the eigenvalues of C are the same real number. So αopt =
Reλ1

|λ|21
=

1

λ1
.

If λ1 ̸= λ2, then Equation (23) can be rewritten as α = αopt =
2(Reλ1 − Reλ2)

|λ1|2 − |λ2|2
.
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As previously mentioned before Corollary 3.1, all the eigenvalues of C are positive. Conse-
quently, by Theorem 3.2, we have the following corollary.

Corollary 3.2. LetAxm−1 = b be a multi-linear system whereA ∈ R[m,n] is a strongM-tensor and b >

0with the exact solutionx∗ > 0,C =
(
diag

(
x
[m−2]
∗

))−1

Axm−2
∗ , andσ(C) = {λ|λ is eigenvalue of C}.

Assume C =
(
diag

(
x
[m−2]
∗

))−1

Axm−2
∗ is strictly diagonally dominant. The Richardson iteration in

Equation (12) for solving Axm−1 = b achieves the minimal convergence rate when

α = αopt =
2

λ1 + λ2
, (24)

where,

λ1 = min
λ∈σ(C)

{λ}, and λ2 = max
λ∈σ(C)

{λ}.

The minimal convergence rate is

ρ(αopt) =
λ1 − λ2

λ1 + λ2
. (25)

Proof. Since all the eigenvalues of C are positive, we can obtain αopt in (24) from Equation (18),
and calculate ρ(αopt) in (25) by evaluating ρ(α) = max

λ∈σ(C)

{
|1− αλ|

}
at αopt in (24).

Remark 3.1. Theorem 3.1 and Corollary 3.1 provided the area of α for convergent Richardson iteration in
solving M-Equation. Theorem 3.2 and Corollary 3.2 give the optimal α to achieve minimal convergence
rate. Note that these results are also valid when applied to Richardson iteration for solving linear systems.
The proofs are similar to the proof in the above theorems and corollaries.

The convergence area and optimal value discussed in above theorems and corollaries involved
parameter α that depends on the exact solution x∗. In the case when x∗ is unknown, the following
theorem is necessary.

Theorem 3.3. Let Axm−1 = b be a multi-linear system where A ∈ R[m,n] is an M-tensor and b > 0.
The stationary Richardson iteration is locally convergent if

α ∈

0,
1

max
i∈<n>

aii···i

 . (26)

Proof. Let x∗ be the exact positive solution of M-Equation Axm−1 = b. According to Theorem
3.1, the Richardson iteration is convergent if

ρ (∇ (ϕ (x∗))) = ρ

(
diag

(
x
[m−2]
∗

)−1

(I − αA)xm−2
∗

)
< 1.

Let α ∈

(
0, 1

max
i∈<n>

aii···i

]
. SinceA is anM-tensor, I−αA is a nonnegative tensor. Thenmatrix
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(
diag

(
x
[m−2]
∗

))−1

(I − αA)xm−2
∗ is also nonnegative. Multiply it with x∗, we have

(
diag

(
x
[m−2]
∗

))−1

(I − αA) xm−2
∗ x∗

=
(
diag

(
x
[m−2]
∗

))−1

x
[m−1]
∗ − α

(
diag

(
x
[m−2]
∗

))−1

Axm−1
∗

= x∗ − α
(
diag

(
x[m−2]
∗

))−1

b < x∗. (27)

Applying the minimax theorem of nonnegative matrices from [6], we get

ρ

((
diag

(
x
[m−2]
∗

))−1

(I − αA)xm−2
∗

)

= min
x⩾0,x ̸=0

max
xi>0

((
diag

(
x
[m−2]
∗

))−1

(I − αA)xm−2
∗ x

)
i

xi

⩽ max
x∗,i>0

((
diag

(
x
[m−2]
∗

))−1

(I − αA)xm−2
∗ x∗

)
i

x∗,i

= max
x∗,i>0

(
x∗ − α

(
diag

(
x
[m−2]
∗

))−1

b

)
i

x∗,i
< 1.

This means the Richardson iteration is convergent.

Theorem 3.3 shows the condition for choosing α only depends on the element ofA that can guar-
antees the convergence of the Richardson iteration. Since the Richardson iteration is locally conver-
gent, the initial vector x0 must be determined. First, we provide a general theorem for all splitting
methods, before giving out the corollary for Richardson iterative method.

Theorem 3.4. Let Axm−1 = b be a multi-linear system where A ∈ R[m,n] is a strong M-tensor and
b > 0. If A = E − F is a weak regular splitting of A, then the iteration,

xk =
(
M(E)−1Fxm−1

k−1 +M(E)−1b
)[ 1

m−1 ] , k = 1, 2, . . . (28)

is locally convergent for any positive initial vector x0 that satisfies Axm−1
0 > 0.

Proof. Based on Lemma 2.1, there exists x0 > 0 such thatAxm−1
0 > 0 sinceA is a strongM-tensor.

Assume that Axm−1
0 ̸= b, otherwise x0 is the solution.

Case 1: Axm−1
0 > b

First, we prove the sequence {xk} generated by Equation (28) is a decreasing sequence
in this case. For k = 1, Equation (28) becomes

x
[m−1]
1 = M(E)−1Fxm−1

0 +M(E)−1b
= M(E)−1(E − A)xm−1

0 +M(E)−1b
=
(
I −M(E)−1A

)
xm−1
0 +M(E)−1b (29)

= x
[m−1]
0 +M(E)−1

(
b−Axm−1

0

)
. (30)
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SinceA = E−F is a weak regular splitting ofA, it hasM(E)−1 ⩾ O andM(E)−1F ⩾ O.
Given that Axm−1

0 > b, we have M(E)−1
(
b−Axm−1

0

)
< 0. So from Equation (30),

x0 > x1.
Suppose that xk < xk−1. From Equation (29),

I −M(E)−1A = I −M(E)−1(E − F)

= I −M(E)−1E +M(E)−1F . (31)

According to the definition of majorization matrix of tensor in Definition 2.3, we have
I −M(E)−1E ⩾ O. Because M(E)−1F ⩾ O, I −M(E)−1A is a positive tensor. Thus,

(I −M(E)−1A)xm−1
k < (I −M(E)−1A)xm−1

k−1 ,

and similarly, we have

x
[m−1]
k+1 = (I −M(E)−1A)xm−1

k +M(E)−1b

< (I −M(E)−1)xm−1
k−1 +M(E)−1b = x

[m−1]
k .

(32)

This means the sequence {xk} is decreasing.
Secondly, we show {xk} has positive lower bound. From Equation (32),

x
[m−1]
k = (I −M(E)−1A)xm−1

k−1 +M(E)−1b
> M(E)−1b > 0, for k = 1, 2, . . . .

(33)

ThenM(E)−1b is a positive lower bound for the sequence {xk}. Therefore, the iteration
of Equation (28) is convergent.

Case 2: If Case 1 is not satisfied, set

τ > max
i∈<n>

(
bi(

Axm−1
0

)
i

) 1
m−1

, and y0 = τx0.

Then, Aym−1
0 = τm−1Axm−1

0 > b, which is actually Case 1.

Remark 3.2. Axm−1
0 > 0 is only a sufficient but not necessary condition for convergence. In [14], they

prove that similar result is valid for 0 < Axm−1
0 < b only, while in this paper, we extend toAxm−1

0 > 0 in
Theorem 3.4.

A corollary for Richardson iteration to Theorem 3.4 is as follows;

Corollary 3.3. Let Axm−1 = b be a multi-linear system where A ∈ R[m,n] is a strong M-tensor and

b > 0. The Richardson iteration with parameter α ∈

(
0, 1

max
i∈<n>

aii···i

]
is locally convergent for any

positive initial vector x0 that satisfies Axm−1
0 > 0.

Proof. Since I − αA is nonnegative with α ∈
(
0, 1

max
i

aii···i

]
, and I−1 = I > O, we have

αA = I − (I − αA) is a weak regular splitting for αA. Based on Theorem 3.4, the Richardson

iteration with parameter α ∈

(
0, 1

max
i∈<n>

aii···i

]
is locally convergent for any positive initial vector

x0 that satisfies Axm−1
0 > 0.
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4 Anderson Acceleration of Richardson Iterative Method

Theorem 3.1 shows that Richardson iterative method is locally linear convergent in solving
M-Equations. In order to speed up the convergence rate of the Richardson iterative method, An-
derson acceleration is considered in this section.

4.1 Anderson acceleration

Anderson acceleration is widely employed to enhance the convergence rate of the iterative
methods in solving linear and nonlinear problems [16]. Unlike Richardson iteration, which only
uses the previous point to approximate the solution at the current point, Anderson acceleration
takes into account several previous points to minimize the residual. The number of the previous
points is called the depth of Anderson acceleration.

Transforming the Richardson iteration into a fixed point problem x = ϕ(x) in (16) leads to

r = b−Axm−1 =
1

α

(
ϕ(x)[m−1] − x[m−1]

)
, (34)

where r is the residual. Define

rk =
1

α

(
ϕ (xk)

[m−1] − x
[m−1]
k

)
, (35)

and

Fk = (rk−l, rk−l+1, . . . , rk) , (36)

where l is the depth of Anderson acceleration. Let xk be the corrected value of xk defined by,

xk =

l∑
i=0

g
(k)
i xk−l+i, (37)

where gk =
(
g
(k)
0 , g

(k)
1 , . . . , g

(k)
l

)T
satisfies

gk = arg min
gk∈Rl+1

∥Fkgk∥ subject to
l∑

i=0

g
(k)
i = 1. (38)

Since
l∑

i=0

g
(k)
i = 1, then g

(k)
l = 1 −

l−1∑
i=0

g
(k)
i . Therefore, Equation (38) becomes an unconstrained

equivalent problem,

gk = arg min
gk∈Rl+1

∥∥∥∥∥rk +

l−1∑
i=0

g
(k)
i (rk−l+i − rk)

∥∥∥∥∥ . (39)

Let the elements of gk be defined as,

g
(k)
i =


h0, i = 0,

hi − hi−1, 1 ⩽ i < l,

1− hl, i = l,

(40)

658



Y. Liang et al. Malaysian J. Math. Sci. 17(4): 645–671(2023) 645 - 671

and

hi =

l∑
j=0

gj , i = 0, 1, . . . , l. (41)

Let Rk =
[
(rk−l+1 − rk−l), . . . , (rk − rk−1)

]
∈ Rn×l. Then, Equations (38) and (39) are equal to

hk = arg min
hk∈Rl+1

∥rk −Rkhk∥2. (42)

Let Xk =
[
(xk−l+1 − xk−l), . . . , (xk − xk−1)

]
∈ Rn×l. Then, xk can be rewritten as

xk =

l∑
i=0

g
(k)
i xk−l+i

= xk +

l−1∑
i=0

g
(k)
i (xk−l+i − xk)

= xk −Xkhk.

(43)

Thus, the Anderson acceleration can be regarded as a subspace method with the subspace of
corrections spanned by Fk. Then, we can compute xk+1 via the standard Richardson iteration

xk+1 = ϕ (xk) . (44)

4.2 Convergence analysis for Anderson Richardson method

In this section, wewill prove that Anderson Richardson iteration converges faster than or equal
to Richardson iteration method as stated in the following theorem. The algorithm for Anderson
Richardson iterative method is given by Algorithm 2.

Theorem 4.1. Consider an M-Equation Axm−1 = b with b > 0.If Richardson iteration is convergent,
then the Anderson Richardson iteration converges faster than or equal to Richardson iteration method re-
gardless of depth l.

Proof. Let rk and xk be the kth residual and iteration, respectively, of the Richardson iteration.
Similarly, let rk and xk be the kth residual and iteration of the Anderson Richardson iteration.
According to Theorem 3.1, if Richardson iteration is convergent, then,

∥rk∥2
∥rk−1∥2

< 1. (45)

It follows from Equations (42) and (43) that,

∥rk∥2 =
∥∥b−Axm−1

k

∥∥
2
= ∥b−A(xk −Xkhk)

m−1∥2
⩽ ∥b−Axm−1

k ∥2 = ∥rk∥2 < ∥rk−1∥2.
(46)

This indicates that Anderson Richardson iteration converges faster than or equal to Richardson
iteration.
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Algorithm 2: Anderson Richardson Iterative Method
Input: Given anM-tensor A, a positive vector b, an appropriate α, maximum iterative

steps kmax, tolerance number ε and a positive initial vector x0. Let the deph for
Anderson acceleration is l.

Output: xk

1 Set k = 1;
2 while k < kmax, do
3 Compute rk = b−Axm−1

k .
4 Set Xk = [(xk−l+1 − xk−l) , . . . , (xk − xk−1)] ∈ Rn×l,

Rk = [(rk−l+1 − rk−l) , . . . , (rk − rk−1)] ∈ Rn×l;
5 if k mod l = 0 then
6 Determine hk =

[
hk
1 , . . . , h

k
l

]
such that hk = arg minh∈Rl ∥rk −Rkhk∥2;

7 Set xk = xk −Xkhk;

8 Set xk+1 =
(
Ixm−1

k + α
(
b−Axm−1

k

))[ 1
m−1 ];

9 else
10 xk+1 =

(
Ixm−1

k + α
(
b−Axm−1

k

))[ 1
m−1 ];

11 if ||Axk+1 − b|| ⩽ ϵ, then
12 Output xk+1;
13 Stop;
14 else
15 k = k + 1;
16 Output “The method fails since it exceeds kmax iterations.”

5 Preconditioned Richardson Iterative Method

Preconditioned techniques are widely used in accelerating iterative methods for linear and
nonlinear systems. For multi-linear systems, several Preconditioned techniques have been pro-
posed such as preconditioned Jacobian type method, preconditioned Gauss-Seidel type, and SOR
type method [2, 9, 15]. Motivated by these works, we attempt to generalize Preconditioned tech-
niques to Richardson iteration method in this section.

Multiplying both sides of multi-linear system (1) by a preconditioner tensor P yields,

PAxm−1 = Pb. (47)

If the preconditioner is a nonsingular matrix instead of a tensor, then (47) becomes,

PAxm−1 = Pb, (48)

where P is the preconditioner. Applying (48) on (9) leads to

Ixm−1 = (I − αPA)xm−1 + αPb, (49)

where αPA is a tensor and αPb is a vector. By letting Ã = αPA and b̃ = αPb, (1) becomes,

Ãxm−1 = b̃. (50)

For strong M-Equation with positive vector b, Li et al. [9] introduced preconditioned Jacobi,
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G-S, and SOR type methods using preconditioner P1 = I + Sβ , where,

Sβ =


0 −β1a12...2 0 . . . 0
0 0 −β2a23...3 . . . 0
...

...
...

. . .
...

0 0 0 . . . −βn−1an−1,n...n

0 0 0 . . . 0

 ,

and βj ∈ [0, 1], j = 1, 2, . . . , n − 1. Later, Liu et al. [15] improved Jacobi, G-S, and SOR type
methods by proposing preconditioner P2 = I +Rβ , where,

Rβ =


0 0 0 . . . 0

−β1a2,1...1 0 0 . . . 0
...

...
...

. . .
...

−βn−2a(n−1),1...1 0 0 . . . 0
−βn−1an,1...1 0 0 . . . 0

 ,

and βj ∈ [0, 1], j = 1, 2, . . . , n−1. In the same year, Cui et al. [3] proposed another preconditioner
P3 = I + Tβ to improve the convergence rate of the same methods, where,

Tβ =


0 −β1a12...2 −β2a1,3...3 . . . −βn−1a1,n...n
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
0 0 0 . . . 0

 ,

and βj ∈ [0, 1], j = 1, 2, . . . , n− 1.

For the purpose of accelerating the rate of convergence of the Richardson iterative method
developed in this paper, we employ the preconditioners P1, P2, and P3 for strong M-Equation
with positive vector b.

Lemma 5.1 and Theorem 5.1 below guarantees that the positive solution of system (1) remains
the same even after applying preconditioners.

Lemma 5.1. If tensor A is a strongM-tensor, then αA is also a strong M-tensor for any α > 0.

Proof. SinceA is a strongM-tensor, thenαA is aZ-tensor. According to Definition 2.6 and Lemma
2.1, if A is a strong M-tensor, then there exists x ⩾ 0 such that Axm−1 > 0. This implies that
αAxm−1 > 0 for any α > 0. Thus, αA is a strong M-tensor.

Theorem 5.1. Let A an n dimensional mth-order strong M-tensor and b be an n dimensional positive
vector. Then the preconditioned system Ãxm−1 = b̃ has the same unique positive solution with the original
system Axm−1 = b, where Ã = αPA, b̃ = αPb and P = Pi, i = 1, 2, 3 respectively.

Proof. Li et al. [9], Liu et al. [15], and Cui et al. [3] have also proven that ifA is a strongM-tensor,
then PkA, k = 1, 2, 3 are also strong M-tensors. Hence, αPA is also a strong M-tensor. It is easy
to see that if b > 0 then αb > 0. By Lemma 2.5, Ãxm−1 = b̃ and Axm−1 = b have the same
positive solution.
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To show the convergence rate of preconditioned Richardson iterative method is faster than the
original, the following Lemma 5.2 and Theorem 5.2 are necessary.

Lemma 5.2. Let A be a strong M-tensor and Ã = αPkA, k = 1, 2, 3, where α ∈
(
0, 1

max
i

aii···i

]
for all

βj ∈ [0, 1], j = 1, 2, . . . , n− 1. Then, Ã = I − (I − Ã) is a regular splitting of Ã.

Proof. It can be seen that Ã = I − (I − Ã) is a splitting of Ã. Based on Definition 2.7, since
M(I) is an identity matrix, I is left-nonsingular, and M(I)−1 = I ⩾ O, we only need to prove
I − Ã = I −αPA ⩾ O. Because Ã = αPA is a strongM-tensor, the off-diagonal elements of Ã is
nonpositive. This indicates the off-diagonal elements of I − Ã is nonnegative. Next, we consider
the diagonal elements of I − Ã.

Case 1: P1 = I + Sβ .
Since Ã = αP1A, then its elements are

ãji2...im =

{
αaji2...im − βjαajj+1...j+1aj+1i2...im , 1 ⩽ j ⩽ n− 1,

αaji2...im , j = n.
(51)

Given that α ∈
(
0, 1

max
i

aii···i

]
, the diagonal elements (j, i2, . . . , im) = (j, j, . . . , j) are

ãjj...j =

{
1− [αaj,j...j − βjαajj+1...j+1aj+1j...j ] > 0, 1 ⩽ j ⩽ n− 1,

1− αann...n ⩾ 0, j = n.
(52)

Case 2: P2 = I +Rβ .
Similar to Case 1, the elements for Ã = αP2A are

ãji2...im =

{
αaji2...im , j = 1, i2, . . . , im ∈ ⟨n⟩,
αaji2...im − αβj−1aj1...1a1i2...im , j ̸= 1.

(53)

Therefore, the diagonal elements are

ãjj...j =

{
1− αajj...j , j = 1,

1− αajj...j + αβj−1aj1...1a1j...j , j ̸= 1,
(54)

which indicates 1− ãjj...j ⩾ 0.
Case 3: P3 = I + Tβ .

In this case, the elements for Ã = αP3A are

ãji2...im =

αa11...1 − α
n∑

j2=2

βj2−1aj2−1,j2...j2aj2,i2...im , j = 1, i2, . . . , im ∈ ⟨n⟩,

αaji2...im , j = n, i2, . . . , im ∈ ⟨n⟩,
(55)

while its diagonal elements are given by

ãjj...j =

αa11...1 − α
n∑

j2=2

βj2−1aj2−1,j2...j2aj2,1...1, j = 1,

αajj...j , j ̸= 1,

(56)

which implies that 1− ãjj...j ⩾ 0.
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Thus, based on the three cases above, we can conclude that I−Ã ⩾ O, whichmeans Ã = I−(I−Ã)
is a regular splitting of Ã.

Theorem 5.2. Let A be a strong M-tensor and Ã = αPkA, k = 1, 2, 3 with α ∈
(
0, 1

max
i

aii···i

]
for all

βi ∈ [0, 1], i = 1, 2, . . . , n− 1. Then, ρ
(
I − Ã

)
< ρ (I − αA) < 1.

Proof. Since α ∈
(
0, 1

max
i

aii···i

]
, we have I−αA ⩾ O. According to Lemma 2.3, there exists λ ⩾ 0

and a nonnegative vector y ̸= 0 that satisfies λ ⩽ ρ (I − αA) < 1, which leads to(
I − Ã

)
ym−1 − λy[m−1] = (I − αPkA)ym−1 − λy[m−1]

= (1− λ)y[m−1] − αPkAym−1

= (1− λ)y[m−1] − Pk(1− λ)y[m−1]

= (I − Pk) (1− λ)y[m−1],

(57)

for k = 1, 2, 3. From (14) in Theorem 3.1 , we obtain λ ⩽ ρ (I − αA) < 1.

Since λ < 1 and y ̸= 0, it follows from Equation (57) that
(
I − Ã

)
ym−1 < λy[m−1]. By Lemma

2.4, ρ
(
I − Ã

)
< λ ⩽ ρ (I − αA) < 1.

By Theorem 5.2, we can conclude that the preconditioned Richardson iteration converges faster
than Richardson iterative method.

6 Numerical Examples

In this section, the numerical examples for Richardson iteration and its accelerations are pre-
sented. Numerical simulations to compare theRichardson iterativemethodswith SOR typemethod
employed in [5], and preconditioned SOR type methods with three different preconditioners em-
ployed in [3], [9], and [15], respectively, are also carried out.

Example 6.1. We construct a multi-linear system with third-order coefficient tensor similar to [5]. First,
we generate a nonnegative third-order tensor B randomly using Matlab. Next, define scalar

s = (1 + ε) · max
i=1,2,...,n

(Be2), ε > 0, (58)

where e = (1, 1, . . . , 1)
T . By letting n = 3 and ε = 0.05, we can get anM-tensor by settingA = sI −B,

where A along the first index is

A(1) =

 a111 a121 a131 | a112 a122 a132 | a113 a123 a133
a211 a221 a231 | a212 a222 a232 | a213 a223 a233
a311 a321 a331 | a312 a322 a332 | a313 a323 a333



=

 5.3226 −0.1107 −0.4508 | −0.1107 −0.9730 −0.4224 | −0.4508 −0.4224 −0.0605

−0.6820 −0.5906 −0.4754 | −0.5906 4.7333 −0.6319 | −0.4754 −0.6319 −0.3993

−0.0424 −0.3077 −0.4479 | −0.3077 −0.8003 −0.8143 | −0.4479 −0.8143 4.8554

 .
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To form a third orderM-EquationAx2 = b, the elements in the positive vector b = (9, 14, 13)T

are randomly generated from integer numbers 1 to 20 in Matlab. We select the parameter
α =

1

max
i∈<n>

aii···i
based on (26) in Theorem 3.3. Next, set the initial vector x0 = e = (1, 1, . . . , 1)T

for all iterations in this example. Based on the Anderson acceleration simulation results for
2 ⩽ l ⩽ 5, l = 3 produces the fastest convergence rate. Therefore, we set the depth l = 3 by
experiment.

The relationships between the number of iterative steps and relative residuals are shown in
Figure 2. It demonstrates that the Richardson iterative methods with and without preconditioner
are linearly convergent, while the Richardson with Anderson acceleration method is nonlinear.
These numerical results confirm Theorem 3.1.
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Figure 2: Relationship between the number of iteration steps and relative residual for five different iterative methods in solving Example
6.1.

Table 1 shows the comparison of five different Richardson iterative methods for solving the
third order M-Equation. It is observed that introducing the Anderson acceleration and precon-
ditioners into Richardson iterative method enhances the convergence rate. Note that different
preconditioner produces different convergence rate. For the convenience of representation, ab-
breviations are given to denote the methods.

Table 1: Comparison of five different Richardson iterative methods for solving Example 6.1.

Iterative Methods Abbreviations Iterative Steps CPU(s)of the Methods
Richardson Richardson 117 0.0011
Richardson with Anderson acceleration AR 55 0.0007856
Richardson with Preconditioner P1 PR1 72 0.0006387
Richardson with Preconditioner P2 PR2 103 0.0008672
Richardson with Preconditioner P3 PR3 68 0.0006813
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To determine the values of α that produce the least iterations for each iterative methods, we
set α from 0.1 to 1with step size 0.01. Relationship between the number of iterations and relative
residuals for different iterative methods is shown in Figure 3.
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(a) Richardson iterative method. (b) AR method.
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(c) PR1 method. (d) PR2 method.
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(e) PR3 method.

Figure 3: Relationship between the number of iterations and relative residuals for five different Richardson iterative methods.

The number of iterations(Iter) and CPU(s) for five different Richardson iterative methods in
Figure 3, where α ∈ [0.01, 0.5] with step size 0.01 are displayed in Table 2. Since all the methods
are not convergent when α > 0.5, we only show the results for α ⩽ 0.5. "null" in the table means
the method is not convergent at the given α value. From the table, the convergence ranges of α
for each method are evident. For example, the convergence range of α for Richardson iterative
method is [0.01, 0.33]. Furthermore, the smallest number of iterative steps and CPU time are in
bold, which implies the corresponding value of α is optimal in the simulation.

Therefore, the results in Table 2 indicate that each iterative method has different values of
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optimal α with different ranges. Similar to the results in Table 1, AR, PR1, PR2, and PR3 can
reduce the number of iterative steps compare to Richardson iterative method.

Table 2: Comparison of five different Richardson iterative methods in terms of number of iterations and CPU(s) for α ∈ [0.01, 0.5] with
step size 0.01.

Richardson AR PR1 PR2 PR3
α Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s)

0.01 2001 0.0140 1007 0.0615 1754 0.0259 2001 0.0198 1684 0.0179
0.02 1359 0.0084 460 0.0074 871 0.0087 1077 0.0109 835 0.0083
0.03 902 0.0058 278 0.0044 576 0.0053 714 0.0069 553 0.0051
0.04 673 0.0039 218 0.0035 429 0.0037 532 0.0045 411 0.0034
0.05 536 0.0031 179 0.0048 340 0.0037 423 0.0039 326 0.003
0.06 445 0.0028 160 0.0021 281 0.0024 350 0.0029 270 0.0022
0.07 379 0.0024 163 0.0023 239 0.002 298 0.0024 229 0.0019
0.08 330 0.0026 169 0.0024 208 0.0019 259 0.0022 199 0.0016
0.09 292 0.0020 157 0.002 183 0.0017 229 0.0019 175 0.0015
0.10 261 0.0018 130 0.0019 163 0.0014 205 0.0018 156 0.0013
0.11 237 0.0016 127 0.0017 147 0.0012 185 0.0018 141 0.0015
0.12 216 0.0015 109 0.0068 134 0.0011 168 0.0016 128 0.0011
0.13 198 0.0014 91 0.0012 123 0.001 154 0.0015 117 0.0009758
0.14 183 0.0014 73 0.0009405 113 0.0009484 142 0.0013 108 0.0008958
0.15 170 0.0013 58 0.0007446 104 0.0008739 132 0.0012 100 0.0008372
0.16 158 0.0012 43 0.0005397 97 0.0008233 123 0.0011 92 0.0007705
0.17 148 0.0011 45 0.0005632 90 0.0008145 115 0.0009661 86 0.0007242
0.18 139 0.0011 48 0.0005995 85 0.0007242 108 0.0009927 81 0.000719
0.19 131 0.0010 57 0.0007152 79 0.0006662 101 0.0008612 75 0.000629
0.20 124 0.0009445 70 0.0008802 75 0.0006247 96 0.000838 71 0.0005945
0.21 117 0.0008886 106 0.0015 70 0.0006642 90 0.0007717 67 0.0005608
0.22 111 0.0008422 235 0.0029 66 0.0005598 86 0.0007365 63 0.0005212
0.23 106 0.0008042 null null 63 0.0005267 81 0.0006998 60 0.0004964
0.24 101 0.0007689 null null 60 0.0005016 77 0.0006587 57 0.0004749
0.25 96 0.0007329 null null 57 0.0004804 73 0.0006202 54 0.0004445
0.26 92 0.000703 null null 54 0.000577 70 0.0005924 51 0.0004201
0.27 88 0.0006757 null null 51 0.0004424 67 0.0005663 49 0.000409
0.28 85 0.0006767 null null 52 0.0004335 64 0.000571 46 0.0003794
0.29 83 0.0006371 null null 55 0.0005142 61 0.0005188 44 0.0003618
0.30 108 0.0008144 null null 61 0.00052 59 0.0004896 42 0.000345
0.31 154 0.0014 null null 68 0.0005653 56 0.0004626 40 0.0003296
0.32 256 0.0020 null null 76 0.0006387 54 0.0004461 38 0.0003138
0.33 683 0.0050 null null 86 0.0007246 56 0.0006561 40 0.0003592
0.34 null null null null 100 0.0008385 64 0.0006717 44 0.0003717
0.35 null null null null 117 0.0009718 78 0.0007456 49 0.0004008
0.36 null null null null 143 0.0012 95 0.0009116 54 0.0004441
0.37 null null null null 182 0.0015 116 0.001 62 0.0005082
0.38 null null null null 250 0.002 160 0.0013 70 0.0005769
0.39 null null null null 392 0.0031 228 0.002 83 0.0006987
0.40 null null null null 864 0.0073 404 0.0034 98 0.0008402
0.41 null null null null null null 1647 0.0134 119 0.0009705
0.42 null null null null null null null null 148 0.0012
0.43 null null null null null null null null 198 0.0016
0.44 null null null null null null null null 284 0.0022
0.45 null null null null null null null null 509 0.0039
0.46 null null null null null null null null 2192 0.0182
0.47 null null null null null null null null null null
0.48 null null null null null null null null null null
0.49 null null null null null null null null null null
0.50 null null null null null null null null null null

In order to test and verify the results in Theorem 3.1 and Theorem 3.2, in Table 3, we compare
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the values of α that produce the least iterations in Table 2 with the optimal α calculated by (18)
in Theorem 3.2 for Richardson and preconditioned Richardson iterative methods (PR1, PR2 and
PR3), as well as the range of α for convergence in Theorem 3.1.

Table 3: Comparison of theoretical calculation and numerical test for different Richardson iterative methods at optimal α and range of α.

Iterative Methods λ1 λ2 Theoretical αopt Optimal α in Table 2 Theoretical range of α Range of α in Table 2
Richardson 1.0311 5.9474 0.2866 0.29 (0, 0.3363) [0.01, 0.33]

PR1 1.6265 3.8141 + 2.0325i 0.2729 0.27 (0, 0.4084) [0.01, 0.40]
PR2 1.3105 4.7914 + 0.4740i 0.3243 0.32 (0, 0.4134) [0.01, 0.41]
PR3 1.7123 4.1077 + 0.9324i 0.3235 0.32 (0, 0.4630) [0.01, 0.46]

In Table 3, λ1, λ2 and theoretical αopt are calculated using (18) and (19) in Theorem 3.2, while
the theoretical range of α is calculated using (13) in Theorem 3.1. The values in Table 3 clearly
demonstrate that the calculated theoretical αopt and range of α coincidewith the numerical results
in Table 2.

Figure 4 shows the dynamics of Richardson iterative method visually for three different initial
vectors x0,1 = (1, 1, 1)T , x0,2 = (4.9, 7.3, 6)T and x0,3 = (5.8, 7.1, 6.3)T . It can be seen that the
iterations converge from the different initial vectors to the exact solution x∗.

Figure 4: Dynamics of Richardson iterative method for three different initial vectors.

Example 6.2. Consider the same problem as Example 6.1. We compare the proposed five Richardson itera-
tive methods to SOR type method [5] and preconditioned SOR type methods with three different precondi-
tioners in [3], [9], and [15], respectively. The SOR type method involved splittingA = D−L−F , where
D is a diagonal tensor with D = DI, L is a tensor with L = LI, and D, L are the diagonal and strictly
lower triangle part of M(A). Then we can get the iterative scheme for SOR type methods:

xk = M

(
1

ω
(D − ωL)

)−1 (
(F − ωI)xm−1

k−1 + b
)[ 1

m−1 ]

, k = 1, 2, . . . . (59)
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Following [3], [9], and [15], we set ω = 1 for SOR type methods and the αopt shown in Table
3 for the five Richardson iterative methods. The numerical results are reported in Table 4.

Table 4: Comparison of five different Richardson iterative methods and four different SOR type methods.

Iterative Methods Iterative Steps CPU(s)
Richardson 82 0.0006371

AR 43 0.0005397
SOR type 108 0.0016

PR1 50 0.0004356
SOR type with Preconditioner P1 62 0.0005636

PR2 53 0.0004532
SOR type with Preconditioner P2 100 0.0009832

PR3 38 0.0003134
SOR type with Preconditioner P3 56 0.0006118

According to Table 4, it can be concluded that Richardson iterative methods with optimal α is
superior to SOR type methods with ω = 1 in terms of iteration steps and time, both for with or
without preconditioner.

Example 6.3. Consider a similar problem to Example 6.1 butwith higher dimensionM-Equation by setting
A ∈ R[3,10]. The construction of M-Equation and the analysis are similar to the previous Example 6.1,
which produce the results in Table 5 and Figure 5.

Table 5: Comparison of five different Richardson iterative methods for solving Example 6.3.

Iterative Methods Iterative Steps CPU(s)
Richardson 239 0.0142

AR 167 0.0108
PR1 171 0.0115
PR2 185 0.0088
PR3 95 0.0034

Based on Table 5 and Figure 5, we observe similar result to Example 6.1, where Richardson
iterative method with Anderson acceleration and preconditioners converge faster than the one
without.
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Figure 5: Relationship between the number of iteration steps and relative residual for five different Richardson iterative methods in solving
Example 6.3.

7 Conclusions

In this paper, five Richardson iterative methods for solving M-Equation have been proposed.
The convergence of these methods has been proven theoretically and confirmed numerically. By
adding Anderson acceleration and preconditioners to the Richardson iterative method, the con-
vergence rate can be improved. We also theoretically determined the optimal parameter α and
the convergence range of α for Richardson iterative method and show that they coincide with the
numerical simulations. Also, the range of initial vector for iteration is extended from the range in
past study. Furthermore, by comparing the proposed five Richardson iterativemethods to the four
SOR type methods in previous studies, we show that Richardson iterative methods with optimal
α perform better in terms of number of iterative steps and CPU time.

However, among these fiveRichardson iterativemethods, we cannot single out the bestmethod
for solving different M-Equations since AR performs the best convergence rate in Example 6.1
while PR3 is the best in Example 6.3. For future work, one can consider which method is the best
for some special kind of M-Equation and investigating other type of accelerators that produce
better convergence rate in solving M-Equation.
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